真钱游戏-澳门线上赌场

學術預告

當前位置:

網站首頁  >  學術預告  >  正文

當前位置:

網站首頁  >  學術預告  >  正文

具有諾伊曼邊界條件的時間周期非局部擴散 SIS 傳染病模型的閾值動力學


活動名稱:具有諾伊曼邊界條件的時間周期非局部擴散 SIS 傳染病模型的閾值動力學

時間:2025年5月22日16:30

地點:圖書館1111

主講人:王其如

主辦單位:數學科學學院

主講人簡介:王其如,中山大學數學學院(珠海)教授、博士研究生導師,中國工業與應用數學學會理事、數學與國防創新委員會委員、數學模型專業委員會委員,廣東省和廣州工業與應用數學學會理事長、黨支部書記。從事微分方程與動力系統、數學建模等方面的研究及應用,主持完成國家自然科學基金面上項目5項、在研1項,在國內外學術期刊J. Differential Equations、Adv. Nonlinear Anal.、J. Nonlinear Sci.、Nonlinear Anal. Real World Appl.、Discrete Contin. Dyn. Syst.、Fract. Calc. Appl. Anal.、中國科學數學(中、英文版)等發表相關學術論文140 余篇。是德國《數學文摘》和美國《數學評論》的評論員,Journal of Advances in Applied & Computational Mathematics雜志編委。

活動簡介:在本次報告中,我們研究了一個具有諾伊曼邊界條件、總人口數恒定的時周期非局部擴散易感 - 感染 - 易感(SIS)傳染病模型。首先,我們探討了時周期非局部擴散算子的譜界極限輪廓,進而分別得到了擴散率趨于零和無窮大時模型基本再生數的漸近行為。接下來,我們根據基本再生數建立了模型穩態解的存在性、唯一性和穩定性。最后,我們討論了易感人群和感染人群的小擴散率與大擴散率對疾病持續存在和消亡的影響。

版權所有?重慶師范大學 渝ICP 備05001042號 渝公網安備 50009802500172號

屏南县| 百家乐官网庄闲比| 百家乐官网平台信誉| 大地百家乐的玩法技巧和规则 | 网上百家乐官网开户送现金| 威尼斯人娱乐场安全吗| 百家乐官网出千手法| 金尊娱乐| 百家乐博乐36bol在线| 淘宝博百家乐官网的玩法技巧和规则| 网上现金游戏| 大发888新老虎机| 百家乐天下第一庄| 麻将百家乐官网筹码| 伊金霍洛旗| 大发888明星婚讯| 百家乐技巧-澳门百家乐官方网址| 爱赢百家乐官网的玩法技巧和规则 | 百家乐网站赌钱吗| 百家乐官网关台| 上饶市| 大发888真人体育| 免费百家乐规律| 中国百家乐官网技巧| 迷你百家乐官网论坛| 全讯网是什么| 怎样打百家乐的玩法技巧和规则| 博乐百家乐游戏| 百家乐官网不倒翁缺点| 钻石娱乐| 大发888登陆网页| 星河百家乐的玩法技巧和规则 | 金宝博滚球| 九乐棋牌下载| 大发888大发娱乐城| 免费百家乐过滤软件| 诸子百家乐的玩法技巧和规则 | 新丰县| 爱拼娱乐场| 12bet存款| 博狗娱乐|